St John Bosco Maths Curriculum Polley and Strategles

This policy has been written in accordance with the National Curriculum 2014 and to support the three main aims of fluency, mathematical reasoning and problem solving. It is designed to provide pupils with a consistent and fluent progression of learning when using the four main operations.

The calculation policy is organised according to age related expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, moving on when they are secure. Decisions about when to progress should always be based on the security of pupils' understanding. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier concepts should consolidate their understanding, through additional practice, before moving on.

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculations, and to help them recognise when to use certain operations and methods when faced with problems. The priority in every maths lesson and the importance of teaching maths across the curriculum is to allow the children to use and apply their calculation skills.

The aims of the curriculum for mathematics at St John Bosco:

- Developing pupils' understanding of number and place value is essential and should be explored daily.
- The strategies chosen should aim to develop pupils' conceptual understanding of calculation.
- Models, images and resources (representations) should be used throughout all key stages.
- Pupils should be encouraged to develop independence, and to select and use resources to support their learning.
- Practical activities should be a regular feature of maths lessons.
- Activities should be differentiated to suit the needs of the pupils.
- Opportunities to work within mixed ability groups should be explored.
- It is more effective to provide pupils with one question to practise the same skill rather than lots of different questions.
- Solving problems should be integral to the maths curriculum.
- Pupils should be encouraged to take risks, make mistakes, and learn from their experiences.
- Teachers will explore misconceptions with pupils in order to deepen their understanding.

Fluency Reasoning and Problem Solving

What does fluency, reasoning and problem solving look like in solving calculation questions?

These are the three aims from the 2014 Mathematics National Curriculum which are to ensure all pupils:

- become fluent in the fundamentals of mathematics, through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

The 2014 mathematics curriculum states that 'Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas... (all) pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems.'

FIueney Reaseonling and Problem solving

Examples of fluency, reasoning and problem solving:

$8 \times 5=40$
Starting with this problem, pupils who demonstrate good fluency, reasoning and problem solving skills are able to use this fact to create others such as:
$5 \times 8=40$
$40 \div 5=8$
$40 \div 8=5$
$8 \times 50=400$
$80 \times 50=4000$
$8 \times 5=20 \times 2$
$(2 \times 4) \times 5=10 \times 4$
$16 \times 2.5=40$
$40 \times 8 \neq 5$
$5 \times 8=8+8+8+8+8$
$5 \times 8=(5 \times 10)-(5 \times 2)$
$0.8 \times 0.5=0.4$
$5 \times 8=10 \times 4$
$23 \times \sqrt{25}=40=8 \times 5$
$40=8 \times 5$

External representations permit us to talk about mathematical relations and meaning.

At S \dagger John Bosco, we use a variety of concrete, pictorial and abstract representations for numbers and calculations. Pupils should have an opportunity to manipulate and experience a variety of models, images, and resources to enable them to choose the most suitable representation for each calculation. In the picture you can see some examples of models, images and resources: arrow cards, bead strings, counters, dice, dienes, digit cards, multilink, number fans, number lines, number tracks, numicon, place value cards, 100 square, sorting objects etc.

	-Read, write and interpret mathematical statements using symbols,,$+-=$ -Represent and use number bonds and related addition facts within 20 -Add one digit and two-digit numbers up to 20 , including zero. -Solve one-step problems using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ -Given a number, identify (and use the language) one more
	- Begin to compare (what's the same/different?) for commutative sums e.g $3+7=7+3$ -Memorise and reason with number bonds to $10 \& 20$ in several forms -Add using objects, Numicon, cubes etc and number lines and tracks -Check with everyday objects
	-Counting objects (including solving simple concrete problems) -Conservation of number: -Recognise place value in numbers beyond 20 -Counting as reciting and as enumerating

- Combine and increase numbers, counting forwards and backwards.
spueals дayto modf syu!
- Develop the concept of addition and subtraction and ... use these operations flexibly
- Discuss and solve problems in familiar practical contexts, including using quantities
- Compare, describe and solve practical [measure] problems e.g. longer, more than, heavier than
- Problems terminology should include: put together, add, altogether, total, take away, distance between, difference between, more than and less than.

Year2 Addifition

$\begin{aligned} & 0 \\ & \frac{0}{n} \\ & \frac{3}{0} \\ & 0 \\ & \vdots \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$	Add numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and ones - a two-digit number and tens $17+2=19 \quad 12+4=16$ - two two-digit numbers - adding three one-digit numbers
	and derive and use related facts up to 20. -Demonstrate the commutative law of addition -Re-partition numbers eg. - Use a hundred square -Check calculations using inverse and by adding numbers in different order - Begin to record addition in columns to support place value and prepare for formal written methods with larger numbers $\begin{array}{r} 30+4 \\ 20+5 \\ \hline 50+9 \end{array}$

Year2 Addition

Year2 Addition

	- Solve problems: - Using concrete objects, pictorial representations (numbers, quantities \& measures) - Applying increasing knowledge of mental \& written methods - Partition numbers in different ways -Discuss and solve problems that emphasise the value of each digit in two-digit numbers (They should) develop the concept of addition and subtraction and ... use these operations flexibly. (Number-addition and subtraction, Non-statutory guidance.)

Year 3 Addifition

[^0]Pupils should estimate the answers to a calculation \& use inverse operations to check answers.
Add amounts of money using both $£$ and p in practical contexts.
Measure, compare and add lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$), mass (kg / g) \& volume/capacity (I / ml)

Year 4 Addilition

	Practise mental methods with increasingly large numbers Consolidate partitioning and re-partitioning $\begin{aligned} 55+37 & =55+30+7 \\ & =85+7 \\ & =92 \end{aligned}$ Use compensation for adding too much/little and adjusting Use straws, Dienes, place value counters, Common Mental Calculations empty number lines etc. Partitioning and recombining, Doubles and near doubles Use number pairs to 10 and 100, Adding near multiples of 10 and adjusting, Using patterns of similar calcula- I know that $63+29$ is tions the same as $63+30-1$ Using known number facts Bridging through ten, hundred Complementary addition		
	Add numbers with up to four digits, using the formal written (columnar) method Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money		

Year 4 Addition

	- Add numbers mentally with increasingly large numbers, e.g. $12462+2300=14762$ - Mentally add tenths, and one-digit numbers and tenths - Add decimals, including a mix of whole numbers and decimals, decimals with different numbers of places, and complements of 1 (e.g. $0.83+0.17=1$) Common Mental Calculations Partitioning and recombining, Doubles and near doubles Children use representation of choice Refer back to pictorial and physical representations when needed.
	Add whole numbers with more than four digits, using the formal written (columnar) method Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money $\begin{array}{r} £ 563.14 \\ +£ 207.88 \\ \hline £ 771.02 \\ \hline 111 \\ \hline \end{array}$
	Revert to expanded methods if children find formal calculation method difficult (see Y3)

Year 5 Addition

	Use physical/pictorial representations alongside columnar methods where needed					
$\begin{aligned} & 7 \\ & \stackrel{1}{N} \\ & \stackrel{7}{7} \\ & \stackrel{3}{0} \end{aligned}$	- Add fractions with the same denominator and denominators that are same number (to become fluent through a variety of increasingly complex add fractions that exceed 1 as a mixed number) $\frac{1}{2}+\frac{3}{4}=\frac{2}{4}+\frac{3}{4}=\frac{5}{4}$	ultip prob \square	\%	e		

	- Solve problems involving up to three decimal numbers.
- Solve addition and subtraction multi step problems in context, deciding which operations and methods to	
use and why	

	- Perform mental calculations, including with mixed operations and large numbers (more complex calculations) Common Mental Calculations Children use representation of choice Partitioning and recombining, Doubles and near doubles Consolidate partitioning and re-partitioning Use number pairs to 10 and 100, Adding near multiples Use compensation for adding too much/little and adjusting of 10 and adjusting, Using patterns of similar calculaRefer back to pictorial and physical representations when tions, Using known number facts, Bridging through ten, needed. hundred, tenth, Complementary addition
	Add larger numbers using the formal written (columnar) method Add three digit numbers using columnar method and then move onto 4 digits. Include decimal addition for money
	Revert to expanded methods if children find formal calculation method difficult (see Y3)
	Use physical/pictorial representations alongside columnar methods where needed. Ask what is the same and what is different? $\begin{aligned} & 12462+2300 \\ & =12462+2000+300 \\ & =14462+300 \\ & =14762 \end{aligned}$ Partitioning and recombining $\begin{gathered} 234 \mathrm{~kg}+49 \mathrm{~kg}=273 \mathrm{~kg} \\ 200+30+4 \\ 40+9 \\ 200+70+13 \end{gathered}$

Year 6 Addition

	- Add fractions with different denominators and mixed numbers, using the concept of equivalent fractions - Start with fractions where the denominator of one fraction is a multiple of the other (e.g. $1 / 2+1 / 8=5 / 8$) and progress to varied and increasingly complex problems - Practise calculations with simple fractions and decimal equivalents to aid fluency
	- Use their knowledge of the order of operations to carry out calculations involving the four operations (BIDMAS) - Solve problems involving all four operations - Algebra: use symbols and letters to represent variable and unknowns e.g. $a+b=b+a$ - Solve problems involving the calculation and conversions of units of measure, using decimal notation of up to three decimal places where appropriate - Using the number line, pupils use, add and subtract positive and negative integers for measures such as temperature - Calculate and interpret the mean as an average - Interpret and construct pie charts and line graphs and use these to solve problems - Find missing angles, and express geometry relationships algebraically (e.g. $d=2 x r$)

Year 1 Subtraction

Year 1 Subtraction

Year 2 Subtraction

Year 2 Subtraction

Year 2 Subtraction

$\frac{\Sigma}{\text { E }}$	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. Pupils should partition numbers in different ways (for example, 23 =20+3 and 23=10+13) to support		
3 0 0 0 0 4 4 0 0 0 n		$\begin{aligned} & 55+45=100 \\ & 45+55=100 \\ & 35+65=100 \\ & 100-55=45 \\ & 100-45=55 \\ & 100-35=65 \end{aligned}$	Solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures - applying their increasing knowledge of mental and written methods - Pupils extend their understanding of the language of addition and subtraction to include sum and difference.

Year 3 Subtraction

Year 3 Subtraction

	Partitioning and re-partitioning support the understanding of place-value. All of these representations still comprise the amount of 36 .
	Introduce transition from concrete place value representations, (e.g. dienes or straws), to pictorial - such as place value counters or money. Revert to concrete manipulatives and expanded methods whenever difficulties arise 132 in dienes 132 in place value counters.
$\begin{aligned} & 7 \\ & \stackrel{7}{0} \\ & \underset{\sim}{7} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	Count up and down in tenths. Add and subtract fractions with the same denominator within one whole. $\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}$ Adding Fractions Bar model
	Money and calculating duration of events (with number lines.) For example: "Add and subtract amounts of money to give change, using both $£$ and p in practical contexts." "Compare durations of events [for example to calculate the time taken by particular events or tasks]." (Measurement)

Year 4 Subtraction

	Continue to practise mental methods with increasingly large numbers to aid fluency. (From Non-Statutory Guidance). Methods to support fluent calculation and encourage efficiency of method: - Find a small difference by counting up. E.g. 5003-4996 This could be done using an empty number line. - Subtract nearest multiple of ten and adjust. Children should recall and use number facts to - Partition larger numbers reduce the number of steps.	
	Whenever possible, children should be encouraged to visualise number lines and other basic, supporting representations to promote fluent work without jottings.	

Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.
Build on formal, extended method (See Year 3) using exchange wherever necessary.
Continue to use representations and manipulatives to develop understanding of place value.

Apply understanding of subtraction with larger integers to that of decimals in context of money and measures. (See Year 5.)

Year 4 Subtraction

	72-47 This is now "Sixty-twelve" ${ }^{6} J^{1} 2$ Use physical and / or pictorial represen alongside columnar methods. Ask: What Compare and discuss the suitability of Pupils decide which operations and m	Dienes blocks or place value counters can be used to model calculations and the under-lying place value concepts. ations and expanded algorithms is the same? What's different? fferent methods in context. hods to use and why. 1 would count on using a number line to calculate 5003-4896; because the numbers are close together.
$\begin{aligned} & 7 \\ & \stackrel{1}{N} \\ & \stackrel{1}{7} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		nt up and down in hundredths. and subtract fractions with the same denominator . e simple measure and money problems involving fractions decimals to two decimal places.

[^1]| | - Subtract numbers mentally with increasingly large numbers. E.g. $12462-2300=10162$
 - Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy .
 - Pupils practise adding and subtracting decimals, including a mix of whole numbers and decimals, decimals with different numbers of decimal places, and complements of 1 (for example, 1-0.17=0.83).
 - Pupils mentally add and subtract tenths, and one-digit whole numbers and tenths. | | Basic Mental
 - Find differ
 - Partitionin
 - Applying k
 - Bridging th
 - Subtractin
 - Counting
 Children use,
 back to physi | rategies for Subtraction ces by counting up |
| :---: | :---: | :---: | :---: | :---: |
| | Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).
 (Pupils) practise adding and subtracting decimals.
 Begin with three-digit numbers using formal, columnar method; then move into four-digit numbers. | | | |
| | As in Year 4, compare physical and / or pictorial representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different?
 Compare and discuss the suitability of different methods, (mental or written), in context.
 Revert to expanded methods whenever difficulties arise | | | |
| | $\begin{array}{r} 1000+700+20+14 p \\ -1000+200+10+6 p \\ \hline 500+10+8 p \end{array}$ | £17.34-£12.16 | | |
| | | | $\begin{array}{r} \mathrm{f} 2 \\ 17.34 \\ -12.16 \\ \hline 5.18 \\ \hline \end{array}$ | |
| | | $\begin{array}{r} -1216 p \\ -518 p \end{array}$ | | Relate place value of decimals with that of whole numbers using representations. See below. |

	Children: - Perform mental calculations, including with mixed operations and large numbers. - Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. - They undertake mental calculations with increasingly large numbers and more complex calculations.	
		Use known number facts and place value to subtract $0.5-0.31=0.18$
	Children draw on basic, Mental subtraction Strategies, (See Year 5.) Children use, or visualise, representation of choice. Refer back to physical representations as required.	

	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction). Solve problems involving the calculation and conversions of units of measure, using decimal notation of up to three decimal places where appropriate. (MEASURES)			
	Move towards consolidation of formal, columnar method. For more complex calculations, with increasingly larger or smaller numbers, compare representations and expanded algorithms alongside columnar methods. Ask: What is the same? What's different? Compare and discuss the suitability of different methods, (mental or written), in context. Revert to expanded methods whenever difficulties arise			
	$\begin{gathered} 932-457 \text { becomes } \\ \begin{array}{r} 8 \\ 93^{12} 2 \\ -\quad 437 \\ \hline 475 \end{array} \end{gathered}$	Consolidate columnar methods, paying particular attention to the occurrence of zeros as place holders.	1 8 6_{7} 10 11 -5 4 5 6 1 3 2 5 5	

Year 6 Subtraction

| Add and subtract fractions with different denominators and mixed numbers. |
| :--- | :--- | :--- |
| They practise calculations with simple fractions and decimal fraction equivalents to aid fluency. |

Year 1 Multiplication

	- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. - Count in multiples of twos, fives and tens with equipment, songs \& rhythms, and including by rote - Counting 2 s e.g. counting socks, shoes, animal legs... - Counting in 5 s e.g. counting fingers, fingers in gloves, toes ... - Counting in 10s e.g. counting fingers, toes ... - Doubles up to 10
$\begin{aligned} & 0 \\ & 0 \\ & \vdots \end{aligned}$	- Recognising odd and even numbers - Write as a number pattern (e.g. $5,10,15 \ldots ; 2,4,6 \ldots ; 10,20,30 \ldots$) Although there is no statutory requirement for written multiplication in Year 1, it may It is important to use a range of models to develop understanding of multiplication, and that children make connections between arrays, number patterns, and counting in twos, fives and tens be helpful to encourage children to begin to write it as a repeated addition sentence in preparation for Year 2 E.g. $2+2+2+2=8$

Year 1 Multipllication

	Count in multiples of twos, fives and tens (from Number and place value), as above Counting in twos, five and tens from different multiples to develop their recognition of patterns in the number system They discuss and solve problems in familiar practical contexts, including using quantities.

Year 2 Multiplication

	- Recall and use multiplication and division facts for the $\mathbf{2 , 5} \mathbf{5}$ and $\mathbf{1 0}$ multiplication tables, connecting the 2, 5 and 10 multiplication tables to each other Connect the 10 multiplication table to place value Recognise odd and even numbers show that multiplication of two numbers can be done in any order (commutative) Use a variety of language to describe multiplication and division Apply doubling of numbers up to ten to doubling larger numbers
	- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs Begin to use other multiplication tables and recall facts to perform written calculations Use a range of materials and contexts ... including arrays and repeated addition $\begin{aligned} & 7 \times 2=\square \\ & 7 \times \square=14 \\ & \square \times 2=14 \\ & \triangle \times \square=14 \end{aligned}$
	- write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of 2/4 and $1 / 2$ - Begin to relate multiplication and division models to fractions and measures
	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. Use commutativity and inverse relations to develop multiplicative reasoning (e.g. $4 \times 5=20$ and $20 \div 5=4$) Statistics-interpret and consttruct simple pictograms, tally charts and block diagrams Measurement-counting 5 minute intervals on a clock face Place value count in steps of 2,3 and 5 from 0 and in tens from any number, forwards and backwards

Year 2 Multiplication

Year 3 Multiplication

- recognise and show, using diagrams, equivalent fractions with small denominators

- solve problems, including missing number problems, involving multiplication, including positive integer scaling problems and correspondence problems in which \mathbf{n} objects are connected to \mathbf{m} objects.
- The comparison of measures includes simple scaling by integers (for example, a given quantity or measure is twice as long or five times as high)
- Pupils now use multiples of $2,3,4,5,8,10,50$ and 100.
- Pupils understand and use simple scales (for example, 2,5,10 units per cm) in pictograms and bar charts with increasing accuracy.

Year 4 Multiplication

Year 4 Multiliplication

- solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as \mathbf{n} objects are connected to \mathbf{m} objects.
- Convert between different units of measure (e.g. km to \mathbf{m}) - use multiplication to convert from larger to smaller units
- Understand the relation between non-unit fractions and multiplication/division of quantities. With particular emphasis on tenths and hundredths
- relate area to arrays and multiplication.
- Problem solving work can involve finding all possibilities and combinations drawing on knowledge of multiplication tables facts
- Pupils understand and use a greater range of scales in their representations (Statistics)

Year 5 Multiplication

41

Year 5 Multiplication

- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams -identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
Pupils connect multiplication by a fraction to using fractions as operators (fractions of), and to division, building on work from previous years. This relates to scaling by simple fractions, including fractions >1.

$1 / 1 \times 1 / 2$		
Scaling by $1 / 2$		
"finding a half of a		
quarter"		

$1 / 2 \times 1 / 4$
" $1 / 4$ of a $1 / 2$ ": find a $1 / 2$, then divide it by 4 .

Encourage children to draw diagrams to represent situations or problems involving fractions Model how to do this, for example:
$2 / 5$ of a number is 20 . What is the number?
$\underbrace{|10| 10 \mid}_{20}|10| 10 \mid 10$ Whole $=50$

- identify multiples \& factors, including finding all factor pairs of a number, \& common factors of two numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes, and including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling.
- convert between different units of metric measure; problems including money,.

Other links: ratio,

Pupils use their knowledge of place value and multiplication and division to convert between standard units.
Pupils calculate the perimeter of rectangles and related composite shapes, including using the relations of perimeter or area to find unknown lengths. Missing measures questions such as these can be expressed algebraically, for example $4+2 b=20$ for a rectangle of sides 2 cm and $b \mathrm{~cm}$ and perimeter of 20 cm .
Pupils calculate the area from scale drawings using given measurements.

Year 6 Multiliplication

43

Year 6 Multiplication

	Look at long-multiplication calculations containing errors, identify the errors and determine how they should be corrected What's the same? What's different?
$\begin{aligned} & \frac{7}{3} \\ & \stackrel{1}{3} \\ & \frac{0}{3} \\ & \vdots \end{aligned}$	\bullet multiply simple pairs of proper fractions, writing the answer in its simplest form e.g. $1 / 4 \times 1 / 2=1 / 8$ Three key applications of understanding: - Recognise that $1 / 4$ of $12,1 / 4 \times 12$ and 12 divided by 4 are equivalent - Use cancellation to simplify the product of a fraction and an integer e.g. $1 / 5 \times 15=3,2 / 5 \times 15=2 \times 1 / 5 \times 15=$ $2 \times 3=6$ - Work out how many $1 / 2$ in 15 , how many $2 / 5 s$ in 15 , how many $2 / 5$ s in 1 etc. \square \square To calculate $1 / 1 / x 1 / 2$, find $1 / 2$ of a rectangle/array, then divide that $1 / 2$ into $1 / \mathrm{s}$. So $1 / 9$ of $1 / 2$ is $1 / 8$ Pupils should use a variety of images to support their understanding of multiplication with fractions. This follows earlier work about fractions as operators (fractions of), as numbers, and as equal parts of objects, e.g. as parts of a rectangle.
	- identify common factors, common multiples and prime numbers - use their knowledge of the order of operations to carry out calculations involving the four operations - solve problems involving addition, subtraction, multiplication and division - explore the order of operations using brackets; for example, $2+1 \times 3=5$ and $(2+1) \times 3=9$. - Fractions, decimals and percentages including equivalences in different contexts. - solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts - solve problems involving the calculation of percentages [for example, of measures, and such as $\mathbf{1 5 \%}$ of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. - Algebra including formulae, linear number sequences, combinations of variables - Measurement including solving problems with conversion of units, decimal notation, area \& volume - Statistics including pie charts, line charts and calculating the mean

Year 1 Division

$\frac{\mathrm{O}}{2} \leq$	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. (Pupils) make connections between arrays, number patterns, and counting in twos, fives and tens.
	Count on or back in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s and Songs are useful look for patterns. for counting in steps.
	Pictorial jottings to support the calculation of $8 \div 4$ Children should experiment with the concepts of sharing and grouping in a number of contexts. Initially they use their own recording-moving towards fluent, symbolic notation in Year 2. Conceptual understanding and recording should be continuously supported by the use of arrays as a default model, as well as other representations, (see below.)
	The relationship between multiplication and division must be continually considered.
7 $\stackrel{\rightharpoonup}{\grave{3}}$ $\stackrel{\rightharpoonup}{5}$ 을	Recognise, find and name a half as one of two equal parts of an object, shape or quantity Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity. (See Representations above.)
	They practise counting as reciting numbers and counting as enumerating objects, and counting in twos, fives and tens from different multiples to develop their recognition of patterns in the number system (for example, odd and even numbers). (PLACE VALUE). Pupils are taught half and quarter as 'fractions of' by solving problems using shapes, objects and quantities. (FRACTIONS)

Year 1 Division

Year 2 Division

	The relationship between multiplication and division must be continually considered.
	- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers. - Calculate mathematical statements for multiplication and division within - the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs .
	" 5 , one time", " 5 , two times" and so on. - Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot - Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. (See below.) $1 / 2 \text { of } 26=13$ $26 \div 2=13$ Pupils decode a problem first, represent it using manipulatives and jottings; and finally record it symbolically.
$\begin{aligned} & \pi \\ & \vdots \\ & 0 \\ & \vdots \\ & \overline{0} \\ & u \end{aligned}$	Recognise, find, name and write fractions $1 / 3,1 / 4,3 / 4,2 / 4$ of a length, shape, set of objects or quantity Write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $1 / 2$ and $2 / 4$.

Year 2 Division

Year 3 Division

	Pupils should be taught to recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Pupils continue to practise their mental recall of multiplication tables... in order to improve fluency. Pupils develop efficient mental methods, for example, using commutativity and associativity (e.g., $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240)$ and multiplication and division facts to derive related facts.
	Pupils should be taught to: - write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods. -solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which \mathbf{n} objects are connected to m objects, (see Links from other strands, below.)
$\begin{aligned} & 7 \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{7}{7} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	- Recognise that tenths arise from dividing an object into $\mathbf{1 0}$ equal parts and in dividing one-digit numbers or quantities by 10. - Recognise and show, using diagrams, equivalent fractions with small denominators. - Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.

Year 3 Division

	Pupils should be taught to: - recall multiplication and division facts for multiplication tables up to 12×12 - use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers - recognise and use factor pairs and commutativity in mental calculations Pupils practise mental methods and extend this to three-digit numbers to derive facts.
	Pupils should be taught to: - multiply two-digit and three-digit numbers by a one-digit number using formal written layout - solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects. Pupils practise to become fluent in the formal written method of short multiplication and short division with exact answers.
	Revert to expanded methods if children find formal calculation method difficult
$\begin{aligned} & \frac{\pi}{2} \\ & \frac{\partial}{0} \\ & \frac{0}{j} \end{aligned}$	Pupils should be taught to: - recognise and show, using diagrams, families of common equivalent fractions - recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. - solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number - find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths

Year 4 Division

Year 5 Division

	. Pupils should be taught to: - multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 - multiply and divide numbers mentally drawing upon known facts identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers . "I know that the answer to $138 \div 6$ Pupils apply all the multiplication tables and related division facts frequently and use them will be close to 20 , confidently. because $2 \times 6=12$, so $20 \times 6=120$."
	Pupils practise and extend their use of the formal written methods of short multiplication and short division. - Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context. Answer: 14 Answer: 86 remainder 2 $496 \div 11$ becomes Answer: $45 \frac{1}{11}$ - Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding. (See Representations below.)
	Revert to expanded methods if children find formal calculation method difficult

Year 5 Division

- Pupils use all four operations in problems involving time and money, including conversions. using decimal notation, including scaling.
- calculate and compare the area of rectangles (including squares). (MEASURES)
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
- solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes and including scaling by simple fractions and problems involving simple rates.
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign. (NUMBER-MULTIPLICATION AND DIVISION)

Multiplication https://www.ncetm.org.uk/resources/40530	Algebra	Number facts	Division
KS1 - Multiple Representations of	resources/43649	resources/40533	resources/43589
Multiplication	KS1-Look at'missing numbers'	KS1 - Number bonds to ten	KS1- Sharing and grouping
KS1-The commutative law for multiplication Lower KS2 - Grid multiplication as an interim	KS2 - Equations and substitution KS3-Factorising*	KS1 - Consolidation and practice (Addition and Subtraction)	KS2 - Place value counters for division
step Upper KS2 - Moving from grid to a column		KS1 - Reinforcing Table Facts KS1 - Rapid recall of multiplication facts	KS3-Group working on problems*
Number and Place value https://www.ncetm.org.uk/resources/40534 KS1 - Counting in steps of one and ten KS1 - Partitioning in different ways KS1 - Addition and Subtraction KS1 - Using resources to develop fluency and understanding KS2 - Partitioning (subtraction)	Fractions https://www.ncetm.org.uk/ resources/43609 KS1- Adding fractions and mixed numbers KS2 - Using an array to add fractions KS2-Bar model dividing by fractions KS3 - Fraction wall to add fractions*	Subtraction https://www.ncetm.org.uk/ resources/40532 Lower KS2 - Partitioning Lower KS2 - Discussing Subtraction Strategies Lower KS2 - Developing Column Subtraction Upper KS2-Column Subtraction	Multiplicative reasoning https://www.ncetm.org.uk/ resources/43669 KS2 - Bar model for multiplication KS3 - Ratio and proportion*\|

Add $+\quad$	Add, total, sum, more, plus, increase, altogether
Algebra	a symbol representing a number
Arrays	A rectangular representation where each row and column must have the same number of objects or pictures.
Commutative	In addition, numbers can be added up in any order and the total remains the same e.g. a $+b=b+a$.
Divide \quad	Dividing is a quick way of subtracting several lots of the same number of quantity, or splitting it up into equal groups.
Divisor	The divisor is the number you divide by e.g. in $6 \div 3$ the divisor is 3.
Equals	the same value as, equivalent, balance
Equation	A number sentence that uses letters or symbols to replace digits, a statement where two mathematical expressions have the same value.
Generalise	Look for a general pattern that will help to solve a related problem.
Grid	A way to organise a multiplication or division calculation where the number being divided is
partitioned. The partial products are shown in the	
grid. See diagram in multiplication and division	
sections.	

Grouping	Where a set of objects or a number is grouped into an already established number until no more groups can be made. E.g. 35 sweets shared between 7 friends would make 7 groups of 5.
Inverse	Opposite or reverse operations, e.g. $16-7=9$ so g+ $7=16$
Multiply x	So many groups of, lots of, and sets of. Times, find the product of.
Pedagogy	Teaching method used e.g. asking questions, encouraging to look for patterns etc.
Quotient	A quotient is the whole number of times you can divide one number by a number.
Remainder	If you cant divide a number exactly you have an amount left over - this is called the remainde--r.
Repeated addition	Repeated addition is the process of grouping. Where a number is repeatedly added from 0 to the target number e.g. repeatedly adding 5 . For larger numbers, multiples of e.g. 5 can be repeatedly added.
Repeated subtraction	Repeated subtraction is the process of grouping. Where a number is repeatedly subtracted from the total e.g. repeatedly subtracting 5 from 35 (7 times). For largerl numbers, multiples of e.g. 5 can be repeatedly subtracted.
Sharing	Where a set of objects or a number is shared equally into a given number of sets. E.g. 28 sweets are shared into 7 equal piles.
Subtract -	Minus, take away, find the difference, count how many left, find that many fewer than before.

[^0]: spuexдs дәчдо
 moıf syu! 7

[^1]: | 5 |
 | :---: |
 | | |
 | | |

 Identify, represent and estimate numbers using different representations. (Place value)
 Recognise the place value of each digit in a four-digit number.
 Estimate and use inverse operations to check answers to a calculation .
 Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.
 Estimate, compare and calculate different measures, including money in pounds and pence.

